Makes my brain explode — but now it can be repaired

It’s almost impossible to discuss this article without leaping out of the chair and waving my arms around, squealing with the sheer thrill of its deep and wide implications for treatment and understanding:

Precisely Engineering 3-D Brain Tissues

Using a 3-D printer, transparencies, and binder clips, these wunderkinder can create neural tissues that mimic the cellular proportions and relationships of real, living brains.

On this basis, here are some possibilities discussed in the article:

  • Watch how brain tissue responds under different circumstances, leading to new understanding of brain growth, disease progression and structure-dependent brain abnormalities.
  • Repair damaged brain tissue. With historic rates of traumatic brain injury in the most productive age group, this alone is world-changing.
  • With samples from patients, custom brain cultures can be grown, and drugs tested against them, targeting drug treatment that works on the first trial. This saves people who need CNS-affecting drugs countless weeks and months — even years — of untold misery, as different drugs get pushed through their systems in an effort to find one that works.

Harvard Med and MIT at their collective finest.

The great challenge, of course, is getting this OUT of the lab and INTO the populations that need it. I hope it’s not kyboshed by those whose profits depend on the current ineffective, inefficient, expensive, and unspeakably brutal systems of CNS treatment.

Let good medicine prevail.

Share

Glia: all that and a bag of chips — but what kind?

A fascinating study which further clarifies the role of those fascinating, complex, busy busy cells, the glia:

http://www.sciencedaily.com/releases/2011/12/111229131354.htm?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+sciencedaily%2Fmind_brain+%28ScienceDaily%3A+Mind+%26+Brain+News%29

ScienceDaily (2011-12-29) — New research indicates that glia cells are “the brain’s supervisors.” By regulating the synapses, they control the transfer of information between neurons, affecting how the brain processes information. This new finding could be critical for technologies based on brain networks, as well as provide a new avenue for research into disorders such as Alzheimer’s disease and epilepsy.

This study indicates that glia regulate the speed of synaptic transmission, slowing or speeding up synaptic events according to what is needed. This means, for instance, that epileptic seizures, which are synaptic storms, relate to glial misbehavior.

The next question is, how? Why? What causes the glia to modulate a given transmission?

I’m looking forward to further studies on this.

Share

News flash: the gut and brain are connected!

The obvious scatological humor will be left alone. Guys, you know what I mean. (Girls who were outnumbered by your brothers, you too.)

I started to blog this article because the forehead-smacking tone of the revelation that the gut might relate to the brain was a bit too much for me. On closer examination, it looks like the misplaced drama is the writer’s, not the scientists’.

One of the places where serotonin is released is in the gut, where it helps digest proteins. That’s the most obvious “duh” moment here. Moreover, as those of us who remember our embryology know, the inter-relationships and constant correspondence between neurology and gut, gut and immunity, immunity and endocrine system, endocrine and neurological system are all too intense and interlocked for words.

Most studies make brutally clear that these so-called systems are medically treated as separate and distinct, but our bodies never got that memo. It’s all the same system, as far as the body is concerned.

Much of this researcher’s recent work focuses on neurology of the gut — enteric neurology. It’s a real thing now. His prior work focused on the biological environment in the gut, or the intestinal microbiota.

// START Word geek goes wild:
Sometimes, I just love medical terminology for the way it rolls, hops, and bounces off the tongue. Enteric neurology. Intestinal microbiota. Hypothalamic-pituitary-adrenal axis.

Maybe that last one doesn’t work so well.
// END Word geeking.

If you can stand the medical and chemical jargon, it’s worth looking into some of his work. It’s probably not a stretch to call it prescient, in that it is likely to lay the foundations for our emerging understanding of the gut as a more complex and self-managing, yet interlocked, set of systems than we’ve ever imagined before.

I can’t find the original science article, just this unsatisfactory and superficial overview. It says that intestinal microbiota affect the person’s mood and feelings, and that it’s possible to deliver specific probiotics (like yogurt species, naturally-fermented cole slaw, certain cheeses and the like) in order to have a specific benefit to the neurological system.

If you were an empiricist, like me, it would sound like “eating good, living food leads to better mental health,” which healers have been saying for millenia. But far be it from me to steal such well-researched thunder.

Link list:

Science Daily article:
A Gut-Full of Probiotics for Your Neurological Well-Being

Credentials of lead researcher, Prof. Lyte:
Mark Lyte, Ph.D., M.S., MT (ASCP)

Wikipedia’s digest (sic) of the enteric nervous system (this seems basically congruent with the uber-geeky medical studies I looked at on the subject, so I accept it as a decent primer):
Enteric Nervous System

Couldn’t find a good overview that didn’t involve more dead rodents than I could, er, stomach.

Share

A job well begun …

I have CRPS-1/RSD/causalgia, and when your condition has more than one name, it’s a bad sign. I was a nurse, I was a tech writer, and I remain fascinated by health and technology.

Some parts of my brain have blown gaskets, but examining the science relating to neurology/immunology/endocrinology — and mulling how it could work in real life — seems to go just fine. It’s appropriate to both my professions that I want to track, document, and share what I learn.

You’re invited to watch and engage in this interesting journey. It’s taking place at an unimaginably rich, burgeoning age of technological development and biological understanding.

Share